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Abstract

The probability distribution of structure factors with
non-integral indices is derived. The distributions are ®rst
studied in the one-dimensional case, to understand their
main features, then the three-dimensional case is
treated. Only the P1 group is taken into consideration.
For integral values of the indices, the distributions
coincide with those provided by Wilson statistics but
may strongly differ from them when the indices are (or
are close to) half-integrals and are suf®ciently small. In
these cases, the moduli and phases of the re¯ections may
be accurately estimated in the absence of any structural
information. Conditional distributions are also derived
which are able to estimate moduli or phases by
exploiting the prior information on the speci®c crystal
structure.

1. Symbols and notation

N : number of atoms in the unit cell
fj : scattering factor of the jth atom (thermal factor
included)
h : three-dimensional index with integral components
(h, k, l)
p : three-dimensional index with rational components
(p1, p2, p3)
F : structure factor
' : phase of the structure factorP

1 �
PN
j�1

fj

P
2 �

PN
j�1

f 2
j

Zj : atomic number of the jth atom

2. Introduction

The statistical properties of the structure factors with
integral indices (referred to as `Wilson statistics') have
been carefully investigated since the ®rst contribution by
Wilson (1942). The reader will ®nd a updated descrip-

tion of the subject in the splendid monograph by
Shmueli & Weiss (1995).

Properties of structure factors with non-integral
indices have been used in different contexts inside the
crystallographic phase problem. We quote:

(a) Boyes-Watson et al. (1947) determined the signs of
the centrosymmetric structure factors via the use of the
intensities at non-integral Miller indices;

(b) Sayre (1952) underlined that the sign problem in
centrosymmetric crystal structures is solvable if the
intensities of the re¯ections with half-integral indices are
known;

(c) Mishnev (1996) applied the discrete Hilbert
transform, previously introduced by Ramachandran
(1969), to express structure factors with non-integral
indices in terms of standard ones;

(d) Zanotti et al. (1996) applied the Mishnev results
(involving half-integral-index re¯ections) to extend and
improve phase information;

(e) In molecular replacement methods, the rotation
function (Rossmann & Blow, 1962) may be calculated in
reciprocal space asP

p

jFpj2
P

h

jFhj2Ghp

� �
;

which involves summations over integral indices h and
non-integral indices p.

In spite of the above applications (and others which
for shortness are not quoted), no attempt has been made
so far to de®ne the statistical properties of the structure
factors with non-integral indices. This is the main job of
this paper, which may be considered a propaedeutic of
the use of such re¯ections in the phase problem.

3. About the basic assumptions

Wilson statistics hold if one of the following assumptions
are made:

(a) the atomic positions are assumed to be random
variables;

(b) the structure is ®xed while h is allowed to vary
over reciprocal space.



Assumption (a) answers different questions like: what
is the expected average value of a given re¯ection h?
How is the jFhj2 value of a given re¯ection h distributed
around the expected value? Assumption (b) answers
questions like: for a given set of structure factors, what is
the expected average value of the jFhj2's? How are the
jFhj2 values of the set distributed around the average?

Evidently, the two statistical approaches are distinct;
however, Weyl's (1916) theorem proves that both can be
described by the same formulas. The Weyl theorem may
be expressed as: when an rj vector has rationally inde-
pendent xj, yj, zj components then the fractional part of
h � rj is uniformly distributed within the interval (0, 1)
when h varies in the domain of the integer numbers. As
a consequence, 2�h � rj is uniformly distributed in the
interval (0, 2�), no matter if rj varies over rational
numbers in the interval (0, 1) or h over the integer
components.

Unfortunately, Weyl's theorem cannot be applied to
structure factors with non-integral indices, therefore
assumptions (a) and (b) will lead to different results.
Since re¯ections with different indices may have quite
different statistical properties, assumption (b), even if
practicable, would obscure important properties of the
distributions. In particular, it is not relevant to the phase
problem. Thus, in all our calculations we will adopt
assumption (a), under the explicit condition that the
atomic coordinates are uniformly distributed in the
interval (0, 1). It is worthwhile noting that different
choices for this interval [e.g. the range �ÿ1=2; 1=2�] do
not affect the Wilson statistics but they do affect the
statistics of the structure factors with non-integral
indices. Obviously, our mathematical approach may be
applied to any interval but the mathematical results we
obtain in this paper are strictly dependent on the stated
assumption that the atomic coordinates lie in the
interval (0, 1). The modi®cations to be expected for
different intervals are discussed in x13.

Our ®nal formulas are rather more complicated than
Wilson's distributions. To explain their features, we will
®rst treat the one-dimensional problem and then we will
extend our calculations to three dimensions.

4. The one-dimensional acentric distributions

Let us consider a one-dimensional crystal, with period a:
no element of symmetry is present. We have

Fp � Ap � iBp �
PN
j�1

fj exp�2�ipxj�;
0 � xj < 1 for j � 1; . . . ;N:

The characteristic function of the distribution P�Ap;Bp�,
say

C�u; v� � hexp i�uAp � vBp�i;

may be written in terms of the cumulants Krs of the
distribution. If only terms up to second order are
considered, we have

C�u; v� � exp�i�uK10 � vK01�
ÿ 1

2 �u2K20 � v2K02 � 2uvK11��:
In their turn, the Krs's may be expressed in terms of the
moments mrs of P�Ap;Bp�:

K10 � m10 � hApi
K01 � m01 � hBpi
K20 � m20 ÿm2

10 � hA2
pi ÿ hApi2

K02 � m02 ÿm2
01 � hB2

pi ÿ hBpi2
K11 � m11 ÿm10m01 � hApBpi ÿ hApihBpi:

The expressions of the cumulants have been explicitly
given to emphasize the fact that, unlike for Wilson's
statistics, the moments m10, m01, m11 are nonvanishing
when p is a non-integral value. Then

P�Ap;Bp�

� �2��ÿ2
R�1
ÿ1

R�1
ÿ1

C�u; v� exp�ÿi�uAp � vBp�� du dv

� �2��ÿ2
R�1
ÿ1

R�1
ÿ1

expfÿi�u�Ap ÿ K10� � v�Bp ÿ K01��g

� exp�ÿ�u2K20 � v2K02 � 2uvK11�=2� du dv:

The integral may be calculated by repeated application
of the standard formulaR�1
ÿ1

exp�ituÿ 1
2 qu2� du � �2�=q�1=2 exp�ÿt2=�2q��:

The conclusive result is

P�A;B� � �2��ÿ1�ÿ1=2 expfÿ�2��ÿ1�K02�Aÿ K10�2
� K20�Bÿ K01�2 ÿ 2�Aÿ K10��Bÿ K01�K11�g

�1�
where

� � �K02K20 ÿ K2
11�:

The distribution (1) may be expressed in terms of jFpj
and 'p by standard techniques. We obtained

P�jFpj; 'p� � exp�ÿq1=�2����2��ÿ1�ÿ1=2jFpj
� exp

ÿÿ �1=2��jFpj2f�K02 � K20�=2

� ��K02 ÿ K20�=2� cos 2'ÿ K11 sin 2'g
ÿ �jFpj=����K01K11 ÿ K02K10� cos '

� �K10K11 ÿ K20K01� sin '��; �2�
where

q1 � �K02K2
10 � K20K2

01 ÿ 2K11K01K10�: �3�
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From (2), the following marginal distributions may be
found:

(a)

P�jFpj� � exp�ÿq1=�2����2��ÿ1�jFpj=�1=2�
� expf�ÿjFpj2=2����K02 � K20�=2�gq2; �4�

where

q2 �
R2�
0

exp
��ÿjFpj2=2��f��K02 ÿ K20�=2� cos 2'

ÿ K11 sin 2'g ÿ �jFpj=����K01K11 ÿ K02K10� cos '

� �K10K11 ÿ K20K01� sin '�	 d' �5�
is a factor which does not depend on '.

(b)

P�'� � exp�ÿq1=�2����2��ÿ1�ÿ1=2

� R1
0

ÿjFpj exp�ÿjFpj2=2��f��K02 � K20�=2�

� ��K02 ÿ K20��=2 cos 2'ÿ K11 sin 2'g
ÿ �jFpj=����K01K11 ÿ K02K10� cos '

� �K10K11 ÿ K20K01� sin '�� djFpj: �6�

The distributions (2), (4) and (6) are the ®rst results of
this paper and will be analysed in the following sections.
In particular, we note that, unlike for Wilson's statistics,
phase values can be assigned to non-integral-index
re¯ections. However, their role can be better under-
stood if the origin problem is considered (see x13).

5. The cumulants for the one-dimensional acentric case

Let us denote

cp � sin�2�p�=�2�p�; sp � �1ÿ cos�2�p��=�2�p�:
By analogy, c2p and s2p are the values of c and s calcu-
lated for the re¯ection with index 2p, i.e.

c2p � sin�4�p�=�4�p�; s2p � �1ÿ cos�4�p��=�4�p�:
Accordingly,

cp=2 � sin��p�=��p�; sp=2 � �1ÿ cos��p��=��p�:
From Appendix A, the following expressions for the
cumulants arise:

K10 �
P

1 cp

K01 �
P

1 sp

K20 � 0:5
P

2�1� c2p ÿ 2c2
p�

K02 � 0:5
P

2�1ÿ c2p ÿ 2s2
p�

K11 � 0:5
P

2�s2p ÿ 2cpsp�:
If p is an integer different from zero (say p � h), then

K10 � K01 � K11 � 0; K02 � K20 �
P

2

�
2

and (1), (4) and (6) reduce to the classical Wilson
distributions

P�Ah;Bh� �
ÿ
�
P

2

�ÿ1
exp

�ÿ �A2
h � B2

h�
�P

2

�
P�jFhj� ' 2jFhj

Pÿ1
2 exp

ÿÿ jFhj2
�P

2

�
;

P�'h� � 1=2�:

The study of the distributions (4) and (6) for non-inte-
gral values of p requires supplementary observations.

6. About the expected value of |Fp|2

According to Appendix A,

hjFpj2i � m20 �m02 �
P

2 �1ÿ �c2
p � s2

p�� �
P2

1�c2
p � s2

p�;
which may be arranged in the simpler formula

hjFpj2i �
P

2�1ÿ c2
p=2� �

P2
1 c2

p=2: �7�
It is easily veri®ed that, for p � 0, cp � cp=2 � 1;
furthermore, cp � 0 when p is an integer or a half-
integer, cp=2 � 0 for integral values of p, cp=2 � �1=��p�
for half-integral values of p. As a consequence:

(a) For integral values of p (provided p 6� 0), Wilson's
relation

hjFpj2iW �
P

2 �8�
is obtained.

(b) For equal-atom structures,
P2

1 � N
P

2 and

hjFpj2i �
P

2�1� �N ÿ 1�c2
p=2�:

Accordingly, hjFpj2i may attain large values at half-
integral (and small) values of p: i.e.

hjFpj2i �
P

2�1� �N ÿ 1�=��2p2��:
(c) For p � 0, the relation hjFpj2i �

P2
1 arises, which

agrees with the well known relation F0 �
PN

j�1 Zj. It is
thus suggested that our statistical approach should hold
also in the vicinity of (and at) p � 0.

The main features of (7) may be appreciated by
plotting (see Fig. 1a) hjFpj2i versus p for a 50 equal-atom
random structure (RAND50 in code; all the atoms are
assumed to be carbon, with the same isotropic
temperature factor BT � 5 AÊ 2). In the same ®gure, we
also draw hjFpj2iW (broken line). We note:

(a) Both hjFpj2i and hjFpj2iW decay with sin �=� but
the ®rst is an oscillating function with maxima at half-
integral values of p (but for p � 1=2) and minima at
integral values. The amplitudes of the oscillations decay
with p but are still non-negligible up to p � 9:5. The
practical consequence of (7) is that the moduli of the
structure factors with indices close to some half-integer
are expected to be larger (on average) than the moduli
of the re¯ections with integral indices. This trend is
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clearly con®rmed by Table 1, where the |F | values for
integral and half-integral indices are given up to p � 10.

(b) hjFpj2i regularly decays in the interval (0, 1) (thus
p � 0:5 is the only half-integer index that does not
correspond to a relative maximum). The absolute

maximum is attained at p � 0, where hjFpj2i assumes the
value �P N

j�1Zj�2 � 90 000, corresponding to F0 � 300.
(c) The amplitudes of the oscillations increase with N.

In Fig. 1(b), we plot the hjFpj2i curves for RAND50 and
for RAND250 [this last being an equal-atom (C)
random structure, with N � 250 and BT � 5 AÊ 2]. For
this last structure, the amplitudes of the oscillations are
much larger than those calculated for RAND50;
furthermore, at least at small values of the half-integral
indices, they are even larger than hjFpj2iW . The size of
this effect and its trend against the structural complexity
may be appreciated from Fig. 2, where the ratio
hjFpj2i=

P
2 is shown for RAND50, RAND250 and

RAND500, this last being an equal-atom (C) random
structure with N � 500 and BT � 5 AÊ 2. The ratio is
expected to be 1 at large values of p: the reader may
observe that the convergence rate is low for large values
of N.

The above observations suggest that the distributions
of the structure factors with non-integral indices are
expected to be different from Wilson's distributions; the
differences are expected to be larger for structure
factors with half-integral (or close to half-integral)
indices.

7. The normalized one-dimensional acentric distribution
P(|Ep|)

The concept of a normalized structure factor preserves
its full meaning even for non-integral indices. We de®ne

Ep � Fp=hjFpj2i1=2: �9�

Table 1. RAND50 : list of jFj's and ''s for integral and
half-integral indices up to p = 10

p jFj ' (�)

0.5 945.72 93
1.0 73.00 280
1.5 317.11 79
2.0 2.93 150
2.5 143.19 73
3.0 62.87 9
3.5 110.99 58
4.0 195.41 25
4.5 300.21 96
5.0 72.90 162
5.5 135.88 103
6.0 36.06 194
6.5 126.65 93
7.0 96.32 198
7.5 67.79 3
8.0 101.93 58
8.5 186.21 104
9.0 180.87 171
9.5 97.75 228

10.0 46.83 287

Fig. 1. (a) RAND50: hjFpj2i as given by (7) (full line) is compared with
the

P
2 function (broken line); (b) the hjFpj2i function is plotted

against p for RAND50 (full line) and RAND250 (broken line). The
corresponding hjFpj2iW curves are plotted by dotted lines.
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It may be useful to note that, according to the above
de®nition, E0 � 1 (while, in Wilson statistics,
E0 � N1=2).

The study of distributions (4) and (6) will be made
after having: (a) expressed them in terms of E rather
than of F ; and (b) replaced in (4) and (6) the cumulant
expressions derived in x5. We obtain for P�jEpj� the
following formula:

P�jEpj� � �2��ÿ1 exp�ÿv0�v1jEpj exp�ÿjEpj2v2�q2;

�10�
where

q2 �
R2�
0

exp�ÿjEpj2�v3 cos 2'ÿ v4 sin 2'�

ÿ jEpj�v5 cos '� v6 sin '�� d':
The expressions for vi , for i � 0; . . . ; 6, are given below:

v0 � q1=�2�� � ÿP2
1

�P
2

�
c2

p=2�1ÿ cp�=�;
� � �1ÿ cp��1� cp ÿ 2c2

p=2�
v1 � 2hjFpj2i

�ÿP
2 �

1=2
�

v2 � hjFpj2i�1ÿ c2
p=2�
�ÿP

2 �
�

v3 � hjFpj2i�ÿc2p � �c2
p ÿ s2

p��
�ÿP

2 �
�

v4 � hjFpj2i�s2p ÿ 2cpsp��
�ÿP

2 �
�

v5 � 2
ÿP

1

�P
2

�
cp�cp ÿ 1�hjFpj2i1=2=�

v6 � 2
ÿP

1

�P
2

�
sp�cp ÿ 1�hjFpj2i1=2=�:

For integral values of p, � � 1, v1 � 2; v2 � 1,
v0 � v3 � v4 � v5 � v6 � 0 ; then (10) reduces to the
acentric Wilson distribution

P�jEj� � 2jEj exp�ÿjEj2�:
Let us now evaluate q2 for non-integral values of p.
Denoting

v3 � X2 cos 2�2; v4 � X2 sin 2�2;

v5 � X1 cos �1; v6 � X1 sin �1

yields

q2 �
R2�
0

exp�ÿjEpj2X2 cos 2�'� �2�

ÿ jEpjX1 cos�'ÿ �1�� d';
where

X2 � �v2
3 � v2

4�1=2; �2 � 0:5 tanÿ1�v4=v3�;
X1 � �v2

5 � v2
6�1=2; �1 � tanÿ1�v6=v5�:

We then expand exp�ÿjEpj2X2 cos 2�'� �2�� in a series
of Bessel functions according to

exp�ÿjEpj2X2 cos 2�'� �2��
� I0�jEpj2X2� � 2

P1
n�1

In�ÿjEpj2X2� cos 2n�'� �2�:

The application of the relationsR2�
0

cos�n'� exp�ÿX cos '� d' � 2�In�X�
R2�
0

sin�n'� exp�ÿX cos '� d' � 0

gives

q2 � 2�I0�jEpj2X2�I0�jEpjX1� � 2
P1
n�1

In�ÿjEpj2X2�

� R2�
0

cos 2n�'� �2� exp�ÿjEpjX1 cos�'ÿ �1�� d'

� 2�
h

I0�jEpj2X2�I0�jEpjX1�

� 2
P1
n�1

cos 2n��1 � �2�In�ÿjEpj2X2�I2n�jEpjX1�
i
:

The ®nal result is

P�jEpj� � exp�ÿv0�v1jEpj exp�ÿjEpj2v2�
�
h

I0�jEpj2X2�I0�jEpjX1�

� 2
P1
n�1

cos 2n��1 � �2�

� In�ÿjEpj2X2�I2n�jEpjX1�
i
: �11�

An unexpected feature is immediately observed for (11):
while Wilson's distribution P�jEj� is universal (i.e. it

Fig. 2. The ratio hjFpj2i=
P

2 is plotted against p for the three random
structures RAND50 (full line), RAND250 (broken line) and
RAND500 (dotted line).
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holds for any structure, protein or small molecule,
provided 2�h � r is uniformly distributed over the
trigonometric circle), (11) does depend on the structural
complexity through the coef®cients vi , i � 0; . . . ; 6, �
and

P
i, i � 1; 2. Therefore, we have always to specify

for which structure a given P�jEj� is calculated.
The Bessel series in (11) is rapidly convergent: about

20 terms are suf®cient for a good approximation of

P�jEpj�. However, (11) is not easily computable for p too
close to zero. For clearness, we will discuss here the main
features of P�jEpj� in the interval (1,1), while the
properties of the distribution in the interval (0, 1) will be
analysed in x9.

The distribution (11), as obtained for RAND250, is
plotted in Fig. 3 for selected values of p. We note:

(a) Among the curves drawn in Fig. 3, that corre-
sponding to p � 1:9 is the closest to the Wilson distri-
bution, that corresponding to p � 1:5 is the furthest
away. The criterion to rank the curves is the following: if
p is very close to some integral number and/or is very
large then P�jEpj� will be very close to the Wilson
distribution. Accordingly, 1.9 is the p value that (among
the selected values) is the closest to some integer (i.e. 2)
and has the largest modulus. Then the curve corre-
sponding to p � 1:1 will follow since it has the same
minimal `distance' from an integer number but has
smaller modulus: The order of the curves may then
easily be established: i.e. 0.9, 0.1, 0.8, 0.2, 0.7, 0.3, 0.6, 0.4,
0.5.

(b) The Wilson distribution (p � 1) is the ¯attest
curve of the set, the sharpest one is that corresponding
to p � 1:5. The ®gure suggests that good estimates of
jEpj could be made for small values of p provided they
are close to half-integral values.

(c) As soon as p approaches some half-integral value,
the curve becomes more symmetric around the mode.
The mode of the distribution occurs at an |E| value close
to unity for p � 1:5 and decreases up to about 0.71 (the
value of the Wilson's distribution) when p approaches
some integral number.

(d) As soon as p approaches 1.5, the mode of the
distribution moves towards values very close to the
expected value of jEpj.

In order to show how the distributions depend on the
integral part of p, we show in Fig. 4 curves corresponding
to selected values of p between 2.0 and 2.9. Its
comparison with Fig. 3 suggests that the general features
described for Fig. 3 hold for Fig. 4 too (the `order' of
curves, the relative variance, the mode variation, . . . );
however, the deviations from Wilson's distribution are
smaller in Fig. 4 than in Fig. 3. As a consequence, the
predictability of the jEpj values will rapidly decrease
when p increases.

An effect of the structural complexity is that the
deviations of the P�jEj� curves from Wilson's distribu-
tions will increase with N. In Fig. 5, we show the curves
calculated for selected values of p in the range (2.0, 2.9)
for RAND500 (compare with the corresponding curves
in Fig. 4).

8. The distribution P(u) in the one-dimensional acentric
case

The distribution (6) may be written in the following
shorter form:

Fig. 3. RAND250: the P�jEj� distribution is plotted for selected values
of p between 1 and 2.

Fig. 4. RAND250: the P�jEj) distribution is plotted for selected values
of p between 2 and 3.
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P�'p� � �2��ÿ1 exp�ÿv0�2hjFpj2i
�ÿP

2 �
1=2
�

� R1
0

jEpj exp�ÿjEpj2�ÿ 2�jEpj� djEpj; �12�

where

� � v2 � v3 cos 2'ÿ v4 sin 2';

� � �v5 cos '� v6 sin '�=2:

The integral in (12) may be estimated via the formula
(Gradshteyn & Ryzhik, 1965)R1
0

x exp�ÿ�x2 ÿ 2�x� dx � �2��ÿ1 ÿ ��2��ÿ1��=��1=2

� exp��2=���1ÿ���=�1=2��;
where �(x) is the probability integral de®ned by

��x� � �2=�1=2� Rx
0

exp�ÿt2� dt:

Finally, we obtain

P�'p� � �2��ÿ1 exp�ÿv0��2hjFpj2i�
�ÿP

2 �
1=2
��1=2��

� f1ÿ ���=��1=2 exp��2=���1ÿ���=�1=2��g:
�13�

For integral values of p, v0 � 0, � � 1, � � 1 and � � 0,
then P�'p� � 1=2�, in agreement with Wilson's results.
P�'p� is however non-uniform when p 6� h. In Fig. 6, we
show, for RAND250, the P�'p� curves for selected
values of p in the interval (1.1, 1.9). We note:

(a) the distributions are unimodal;
(b) the curves become sharper when p gets nearer the

half-integral value;
(c) the mode regularly moves from 17� (corre-

sponding to p � 1:1) to 160� (corresponding to p � 1:9).

Fig. 5. RAND500: the P�jEj� distribution for selected values of p
between 2 and 3.

Fig. 6. RAND250: the P�'� curves for selected values of p in the
interval (1.1, 1.9).

Fig. 7. RAND500: the P�'� curves for selected values of p in the
interval (1.1, 1.9).
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As an effect of the structural complexity, the curves
are sharper with increasing values of N (compare Fig. 7
obtained for RAND500 with Fig. 6). Furthermore, the
distributions become ¯atter when the integral part of p

increases (compare Fig. 8 with Fig. 6). From the above
considerations, it may be argued that, if p is close to or
coincident with a half-integral value, then 'p is expected
to be close to �=2, with good accuracy provided p is not
too large.

In order to provide the reader with some insight
about the long-range behaviour of P('), we show in Fig.
9 for RAND250 the distributions at half-integral values
from 1.5 to 10.5. Even at p � 10:5, the phase distribution
is far from being ¯at. The reader can verify in Table 1
that the `true' phases of the re¯ections with half-integral
indices will agree with our expectations.

Some considerations about the phase predictability
are useful. When p is not an integer, the phases
can be predicted just because 2�h � rj is not uniformly
distributed on the trigonometric circle. This feature
may be qualitatively perceived by estimating 'p as
tanÿ1�hBi=hAi�. We have

�'p�est � tanÿ1�m01=m10�
� tanÿ1��1ÿ cos 2�p�= sin 2�p�
� tanÿ1�2�sin2 �p�= sin 2�p�:

Since the numerator is always positive, 'est is restricted
to the interval (0, �) and will be closer to 0� if p is
smaller than the closest half-integer, closer to � if p is
larger than the closest half-integer.

9. About the features of P(|Ep|) and P(up) for 0 <± p < 1

In accordance with Appendix B, distribution (11) is
computable for p � 0.8; for p < 0.8, the arguments of the
exponential and of the Bessel functions are too large
even for a modern computer. Such behaviour is not
unexpected: indeed, P�jEpj� at p � 0 should coincide
with the � function,

P�jEpj� � ��jEpj ÿ 1�;

centred at E0 � 1. This is because at p � 0 Ep is
perfectly estimated via the algebraic (and therefore
certain) relationship Ep � 1.

Similarly, the distribution P('p) is not computable for
p < 0.6: however, there is no doubt that it is expected to
coincide with the � function

P�j'pj� � ��'p�

centred at ' � 0 (indeed, E0 is real and positive). We can
then look at the distribution P�jEpj� and P('p) for p in
the interval (0, 1) as a family of curves approaching �
functions when p! 0. This behaviour may be perceived
by observing Figs. 10 and 11: for RAND250 in Fig. 10,
P�jEpj� is drawn for p � 1, 0.9, 0.8, and in Fig. 11 P('p) is
drawn for p � 0:9, 0.8, 0.7, 0.6.

Fig. 8. RAND250: the P�'� curves for selected values p in the interval
(2.1, 2.9).

Fig. 9. RAND250: the P�'� curves for some selected half-integral
values of p.
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10. The conditional distribution P(up || Ep |) in the one-
dimensional acentric case

It may occur that jFpj, and therefore jEpj, are known
from other sources. This information may be used as
prior for a more accurate estimate of 'p. We have

P�'pjjEpj� � P�'p;Ep�
. R2�

0

P�'p; jEpj� d'p

� exp�ÿjE2
pj�v3 cos 2'ÿ v4 sin 2'�

ÿ jEpj�v5 cos '� v6 sin '��=q2: �14�
To see how (14) varies with jEpj for a ®xed p, we draw it
in Fig. 12 for three values of jEpj (RAND250 and
p � 1:5 have been used). We see that (14) strongly
depends on the known jEpj value: it is sharper if jEpj is
known to be large; it is ¯at if jEpj is known to be small.
In conclusion, the con®dence one should have in 'p will
depend on the prior information on jEpj: if this last is
unknown, the distribution (11) may be used.

The conclusions of this section answer a rather intri-
guing question: `let us suppose that 'h � �. How can we
trust in the distribution (11) if this always estimates
'p � 0 for p very close to and larger than h? Such an
estimate indeed should be in con¯ict with the expected
continuity of the function 'p. The question may be
answered via the use of (14). If 'h � � in the p interval
immediately following the h position [say �h; h� 0:1�],
we can expect that the true phases vary very rapidly: that
will be in better agreement with (14) only if small jEpj
are associated with the p values in the interval. As an
example, we plot in Figs. 13(a), (b), for RAND250, the

true jEpj and 'p values against p for p between 5.5 and 7.
Since '6 � 194� and jE6j � 0:47, the jEpj values, for p
immediately following h � 6, collapse to very small
values of jEpj to ®t better the relationship (14).

11. The conditional distribution P(|Ep ||up) in the one-
dimensional acentric case

It may occur that 'p is known from other sources. This
information may be used as prior for a more accurate
estimate of jEpj. We have

p�jEpjj'p� �
jEpj exp�ÿjEpj2�ÿ 2�jEpj�R1

0 jEpj exp�ÿjEpj2�ÿ 2�jEpj� djEpj
� jEpj exp�ÿjEpj2�ÿ 2�jEpj�
� ÿ�2��ÿ1f1ÿ ���=��1=2 exp��2=��
� �1ÿ���=�1=2��g�ÿ1

: �15�

To check how the distribution (15) varies against 'p, we
draw it in Fig. 14 for RAND250 and p � 1:5. We see that
the expected value of jEpj when 'p is known to be equal
to �=2 is close to unity, as in the case in which 'p is
unknown (see Fig. 5). If we introduce in (15) the prior
knowledge that 'p � 2�, then the expected value of jEpj
remarkably diminishes. The rational is the following: the
prior information that the phase 'p is far from its
expected value will generate, through (15), estimates for
jEpj concentrated about small values of jEj but the
relative distribution may be sharp.

Fig. 10. RAND250: the P�jEj� curves for p = 1, 0.9, 0.8. Fig. 11. RAND250: the P�'� curves for p = 0.9, 0.8, 0.7, 0.6.

CARMELO GIACOVAZZO AND DRITAN SILIQI 965



12. The distribution of structure factors with
non-integral indices in P1

In P1 (three-dimensional case),

Fp �
PN
j�1

fj cos 2��p1xj � p2yj � p3zj�

� i
PN
j�1

fj sin 2��p1xj � p2yj � p3zj�

� Ap � iBp:

Suppose now that xj, yj, zj are randomly and indepen-
dently distributed in the interval (0, 1). Then the
distributions (2), (4) and (6) will still hold provided the
corresponding cumulants are available. We obtain

k10 � hApi �
P

1 cp

k01 � hBpi �
P

1 sp;

where

cp � cp1
cp2

cp3
ÿ cp1

sp2
sp3
ÿ sp1

sp2
cp3
ÿ sp1

cp2
sp3

� cos��p1 � p2 � p3�cp1=2cp2=2cp3=2

sp � sp1
cp2

cp3
ÿ sp1

sp2
sp3
� cp1

sp2
cp3
� cp1

cp2
sp3

� sin��p1 � p2 � p3�cp1=2cp2=2cp3=2

cpi
� sin�2�pi�=�2�pi�

spi
� �1ÿ cos�2�pi��=�2�pi�:

The cumulants of order two may be expressed in terms
of cumulants of order one as follows:

K20 � hA2
pi ÿ hApi2 �

ÿP
2

�
2
��1� c2p ÿ 2c2

p�
K02 �

ÿP
2

�
2
��1ÿ c2p ÿ 2s2

p�
K11 �

ÿP
2

�
2
��s2p ÿ 2cpsp�;

where c2p and s2p are the c and s values calculated for the
re¯ections with indices 2p1; 2p2; 2p3. The probability
distribution P�jFpj� will now be

P�jFpj� � exp�ÿt1��2��ÿ1jFpj�ÿ1=2 exp�ÿt2jFpj2�q2;

�16�
where

t1 � �K02K2
10 � K20K2

01 ÿ 2K11K01K10�=�2��
� � �K02K20 ÿ K2

11�
q2 � 2�

h
I0�jFpj2X2�I0�jFpjX1�

� 2
P1
n�1

cos 2n��1 � �2�In�ÿjFpj2X2�I2n�ÿjFpjX1�
i

X2 � �t2
3 � t2

4�1=2

X1 � �t2
5 � t2

6�1=2

t2 � �K02 � K20�=�4��
t3 � �K02 ÿ K20�=�4��
t4 � K11=�2��
t5 � �K01K11 ÿ K02K10�=�
t6 � �K10K11 ÿ K20K01�=�
�2 � 0:5 tanÿ1�t4=t3�
�1 � tanÿ1�t6=t5�:

The distribution in terms of the normalized modulus
P�jEpj� is trivially obtained from (16) via the transfor-
mation

Ep � Fp=hjFpj2i1=2 � Fp=�m20 �m02�1=2;

where

m20 � 0:5
P

2 �1� c2p ÿ 2c2
p� �

P2
1 c2

p

m02 � 0:5
P

2 �1ÿ c2p ÿ 2s2
p� �

P2
1 s2

p:

The distribution (6) for P1 can be written as

P�'p� � exp�ÿt1��2��ÿ1�ÿ1=2�1=2��f1ÿ ���=��1=2

� exp��2=���1ÿ���=�1=2��g; �17�
where

� � t2 � t3 cos 2'ÿ t4 sin 2'

� � �t5 cos '� t6 sin '�=2:

In their turn, the conditional probabilities P�'pjjFpj� and
P�jFpjj'p� can be expressed as follows:

Fig. 12. RAND250: the P�'jjFpj� curves for p = 1.5 and selected values
of jEpj.
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P�jFpjj'p� � jFpj exp�ÿjFpj2�ÿ 2�jFpj�
� �2��ÿ1f1ÿ ���=��1=2 exp��2=��
� �1ÿ���=�1=2��gÿ1 �18�

P�'pjjFpj� � exp�ÿjF2
pj�t3 cos 2'ÿ t4 sin 2'�

ÿ jFpj�t5 cos '� t6 sin '��=q2: �19�

The behaviour of the above distributions [i.e. from (16)
to (19)] are quite similar to those described for the
corresponding one-dimensional case, thus we will not
expand further. However, the three-dimensionality
introduces a larger variety of re¯ection types:
e.g. re¯ections h� 0:50 00 0, h� 0:50 k� 0:50 0,
h� 0:50 k� 0:50 l � 0:5 may have quite different distri-
butions. To provide a fast if qualitative insight into the
problem, we analyse the ratio hjFpj2i=

P
2. The expected

value

hjFpj2i �
P

2 �1ÿ �c2
p � s2

p�� �
P2

1�c2
p � s2

p�
reduces, for an equal-atom structure, to

hjFpj2i �
P

2 �1� �N ÿ 1��c2
p � s2

p��:
Accordingly,

hjFpj2i
�P

2 � 1� �N ÿ 1��c2
p � s2

p� �20�
is an oscillating function: the oscillations are stronger for
large structures. The algebraic form of (20) does not
allow immediate speci®cation of where the maxima and
minima of hjFpj2i=

P
2 are. A further algebraic analysis

led us to the simple expression

hjFpj2i
�P

2 � 1� �N ÿ 1�c2
p1=2c2

p2=2c2
p3=2;

from which the following rule arises: the largest values
of hjFpj2i=

P
2 occur when all of p1, p2 and p3 are half-

integer or zero. When one of the indices is an integer
(different from zero) then hjFpj2i=

P
2 � 1 as for the

Wilson distributions. In accordance with the above rule,
the p vectors with components �1=2; 0; 0�, �0; 1=2; 1=2�
or �1=2; 1=2; 1=2� will correspond to maxima of

Fig. 13. (a) RAND250: true 'p values against p for p lying in the
interval (5.5, 7). (b) RAND250: true jEpj values against p for p lying
in the interval (5.5, 7). Fig. 14. RAND250: the P�jEpjj'p� curves for p = 1.5 and 'p � 0; �=2.
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hjFpj2i=
P

2: the one-dimensional case suggests that the
phases of such re¯ections are predictable. On the
contrary, the structure factors with indices �1=2; 1; 0�,
�2; 1=2; 1=2� or �1; 3; 1=2� will satisfy the Wilson's
distributions: no phase value may be predicted for them.
In order to have more insight into the phase predict-
ability, let us apply the relation

h'pi � tanÿ1�m01=m10� � tanÿ1�sp=cp� �21�

to re¯ections for which all the p1, p2, p3 are half-integers
or zero. From the de®nitions of cp and sp given in x12, it
is easily derived that

h'1=2;0;0i � h'0;1=2;0i � h'0;0;1=2i � �=2

h'1=2;1=2;0i � h'0;1=2;1=2i � h'1=2;0;1=2i � �
h'1=2;1=2;1=2i � 3�=2:

It is worthwhile noting that, as an effect of the three-
dimensionality, the intensity oscillations die down
quickly with increasing values of p1, p2, p3. Accordingly,
the phase distributions soon also become ¯at.

The correctness of our predictions may be checked
via Table 2, where we show, for Jamilas (Dobson et al.,
1990), a P1 crystal structure with chemical formula
K4C64H28N8O28S4, the structure-factor moduli and

phases calculated from the published atomic parameters.
They agree with the values h'pi provided by (21).

13. On the assumption about the atomic positions

We have assumed throughout this paper that the atomic
coordinates xj, yj, zj lie in the interval (0, 1). What is the
effect of a different assumption on the probability
distribution of the structure factors with non-integral
indices? Let us de®ne

F 0p �
PN
j�1

fj exp�2�i�p1x0j � p2y0j � p3z0j�� � jF 0pj exp�i'0p�

as the structure factor when the shift of the origin

T0 � X0a� Y0b� Z0c

has been applied. Then the new coordinates will satisfy
the conditions

ÿX0 < x0j < 1ÿ X0

ÿY0 < y0j < 1ÿ Y0

ÿZ0 < z0j < 1ÿ Z0:

In accordance with the known relationship

F 0p � exp�ÿ2�ip � T0�Fp;

we will have

'0p � 'p ÿ 2�p � T0; jF 0pj � jFpj:
The application of our statistical approach to the above
case will lead to a shifted (along the ' axis) phase
distribution P('p) and to the same distribution P�jFpj�.

14. Conclusions

We started a new theme in the area of structure-factor
statistics: the derivation of the distribution of the
structure factors with non-integral indices. Our main
results may be summarized as:

(a) The distribution P�jFpj� may be quite different
from Wilson's distribution P�jFhj�. The differences
increase when p approaches vectors with half-integral
indices, decrease when the integral part of the index
components increase and/or when p approaches some
reciprocal vector with integer components.

(b) The phase 'p may be predicted with good relia-
bility when |p| is not large and its components are close
to half-integers.

(c) P�jEpj� and P�'p� are not universal, as in Wilson
statistics, but depend on the structural complexity.

The ®rst question to answer is the following: can P(')
be directly applied to the solution of the phase problem?
Our answer is negative: indeed, each phase estimate
available through (17) is independent of the structural
features and only depends on the structural complexity.
However, no phase relationship involving the structure
factors with non-integral indices can prescind the

Table 2. Jamilas structure-factor moduli and phases
calculated from the published atomic parameters for a

selected set of indices

p1 p2 p3 jFpj ' (�)

0.00 0.00 0.00 739.89 360.00
0.00 0.00 0.50 521.57 80.00
0.00 0.00 1.50 103.19 131.00
0.00 0.50 0.00 464.16 91.00
0.00 0.50 0.50 284.91 170.00
0.00 0.50 1.50 64.63 192.00
0.00 1.50 0.00 121.05 97.00
0.00 1.50 0.50 51.72 107.00
0.00 1.50 1.50 53.59 151.00
0.50 0.00 0.00 463.36 82.00
0.50 0.00 0.50 370.31 162.00
0.50 0.00 1.50 101.71 230.00
0.50 0.50 0.00 275.02 171.00
0.50 0.50 0.50 218.82 250.00
0.50 0.50 1.50 74.70 289.00
0.50 1.50 0.00 90.98 201.00
0.50 1.50 0.50 33.09 229.00
0.50 1.50 1.50 79.90 283.00
1.50 0.00 0.00 118.50 55.00
1.50 0.00 0.50 67.81 142.00
1.50 0.00 1.50 157.40 342.00
1.50 0.50 0.00 70.78 122.00
1.50 0.50 0.50 17.84 212.00
1.50 0.50 1.50 126.30 91.00
1.50 1.50 0.00 41.57 354.00
1.50 1.50 0.50 69.54 69.00
1.50 1.50 1.50 84.90 95.00
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information provided by (17). A ®rst example is
constituted by the conditional probability distributions
P�'pjjFpj� and P�jFpjj'p�, which may lead to estimates
that may con®rm or modify the estimates provided by
P('p) and P(|Fp|) according to the available prior
information. In particular, we should look at the
conditional distributions as simple ways of using the
structural information: vice versa, they should be
potentially useful for solving the phase problem.

In the following papers of this series, we will ®rst
describe the structure-factor statistic for the P1Å case and
then new and more useful phase relationships that can
be directly applied for the solution of the phase
problem.

APPENDIX A
Calculation of the cumulants for the acentric one-

dimensional case

We will suppose that the variables xj , j � 1; . . . ;N, are
independently and uniformly distributed in the interval
(0, 1). Then

hApi �
PN
j�1

fj cos�2�pxj�
* +
�P1�sin�2�px�=2�p�10 �

P
1 cp

hBpi �
P

1�cos�2�px�=2�p�01
�P1f�1ÿ cos�2�p��=2�pg �P1 sp

hA2
pi �

PN
j�1

fj cos�2�pxj�
" #2* +

� PN
j1;j2�1

fj1
fj2
hcos�2�pxj1

� cos�2�pxj2
�i

�P2hcos2 2�pxi

� PN
j1 6�j2�1

fj1
fj2
hcos�2�pxj1

� cos�2�pxj2
�i:

�22�

Since xj1
and xj2

have been assumed to be statistically
independent of each other, the average of the product of

the two cosines at the right-hand side of (22) will be
equal to the product of the average. Therefore,

hA2
pi � 0:5

P
2�1� c2p� �

PN
j1 6�j2�1

fj1
fj2

 !
c2

p: �23�

Since P2
1 �

P
2�

PN
j1 6�j2

fj1
fj2
;

(23) reduces to

hA2
pi � 0:5

P
2�1� c2p� �

ÿP2
1ÿ

P
2

�
c2

p

� 0:5
P

2�1� c2p ÿ 2c2
p� �

P2
1 c2

p:

Accordingly,

K20 � hA2
pi ÿ hApi2 � 0:5

P
2�1� c2p ÿ 2c2

p�: �24�
In an equivalent way, the relations

hB2
pi � 1

2

P
2�1ÿ c2p ÿ 2s2

p� �
P2

1 s2
p;

K02 � hB2
pi ÿ hBpi2 � 0:5

P
2�1ÿ c2p ÿ 2s2

p�
may be derived. The last cumulant to calculate is

K11 � hApBpi ÿ hApihBpi

� PN
j1;j2�1

fj1
fj2
hcos�2�pxj1

� sin�2�pxj2
�i

ÿP2
1�sin�2�p�=2�p�f�1ÿ cos�2�p��=2�pg

� 1
2

�PN
j�1

f 2
j

�
hsin�4�px�i

� PN
j1 6�j2�1

fj1
fj2
hcos�2�pxj1

� sin�2�pxj2
�i

ÿP2
1�sin�2�p�=2�p�f�1ÿ cos�2�p��=2�pg

� 1
2

P
2�s2p ÿ 2cpsp�:

It may be worthwhile noting that the second-order
moments all depend on both

P
1 and

P
2 but, as in the

Wilson statistics, the second-order cumulants depend
only on

P
2.

Table 3. RAND250: values of the parameters v0 , v1 , v2 , X1 and X2 at selected values of p in the interval (0.01, 1)

p v0 v1 v2 X1 X2

0.01 5773512954 93667128 2886950144 11547033600 181249264
0.03 71170419 3464737 35606716 142341680 6664132
0.05 9196025 746492 4605739 18392354 1418570
0.08 1392895 181119 699451 2785909 334126
0.1 566933 91113 285380 1133943 165536
0.3 5967 2983 3174 11942 2664
0.5 535 468 320 1073 42
0.7 66 88 88 134 19
1.0 0 2 1 0 0
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APPENDIX B
About the compatibility of P(|Ep |) and P(| up |)

We give in Table 3, for RAND250, the values of the
parameters v0, v1, v2, X1, X2 at selected values of p in the
interval (0.01, 1). It is easily seen that (11) is not
immediately computable for p close to zero (say p < 0.9)
since those values are too large arguments for expo-
nential and Bessel functions.

The computability of P�jEpj� may be improved by
expanding In in an asymptotic series (to be used for very
large arguments):

In�x� � �2�x�ÿ1=2�exp x�Sn�x�; x > 0;

where

Sn�x� � �1ÿ ��ÿ 1�=8x� ��ÿ 1���ÿ 9�=2!�8x�2
ÿ ��ÿ 1���ÿ 9���ÿ 25�=3!�8x�3 � . . .�

and � � 4n2.
Since the behaviour of P�jEpj� in the interval (0, 1)

may be inferred from other considerations (see x9), we
decided not to explicitly calculate it in such an interval.
Analogously, P('p) depends [see (13)] on the param-
eters � and �, the values of which are also ®xed by the

vi's. The consequence is that P('p) is hardly computable
for p < 0.7. Since its behaviour may be predicted (see
x9), we decided not to calculate it in such an interval.

One of the authors (DS) undertook this work with the
support of the `ICTP Programme for Training and
Research in Italian Laboratories, Trieste, Italy'.
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